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Abstract We provide a unifying geometric framework for the analysis of general
classes of duality schemes and penalty methods for nonconvex constrained optimiza-
tion problems. We present a separation result for nonconvex sets via general concave
surfaces. We use this separation result to provide necessary and sufficient conditions
for establishing strong duality between geometric primal and dual problems. Using
the primal function of a constrained optimization problem, we apply our results both
in the analysis of duality schemes constructed using augmented Lagrangian functions,
and in establishing necessary and sufficient conditions for the convergence of penalty
methods.

Keywords Augmented Lagrangian functions · Duality · Penalty

1 Introduction

Duality theory for convex optimization problems using ordinary Lagrangian func-
tions has been well-established. There are many works that treat convex optimization
duality, including the books by Rockafellar [12], Hiriart-Urruty and Lemarechal [8],
Bonnans and Shapiro [6], Borwein and Lewis [7], Bertsekas et al. [3], and Auslender
and Teboulle [2].

It is well known that convex optimization duality is related to the closedness of the
epigraph of the primal (or perturbation) function of the optimization problem (see,
e.g. [2, 3, 7, 12]). Furthermore, convex optimization duality can be visualized in terms
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Fig. 1 Supporting the epigraph of the primal function p(u) with affine and nonlinear functions. Parts
(a) and (b) illustrate, respectively, supporting the epigraph of a convex p and a nonconvex p with an
affine function. Part (c) illustrates supporting the epigraph with a nonlinear level-bounded augment-
ing function. Part (d) illustrates supporting the epigraph with a nonlinear augmenting function with
unbounded level sets

of hyperplanes supporting the closure of the convex epigraph of the primal function,
as shown in Fig. 1a (see [4]). A duality gap exists when the affine function cannot
be pushed all the way up to the minimum common intercept of the epigraph of the
primal function with the vertical axis. This situation may clearly arise in the presence
of nonconvexities in the “bottom-shape” of the epigraph of the primal function, as
shown in Fig. 1b. A duality gap may be avoided if nonlinear functions are used instead
of affine functions. Nonlinear functions can penetrate a “possible dent” at the bottom
of the epigraph, as shown in Fig. 1c, d.

This idea is introduced by Rockafellar and Wets in their seminal book [13]. In
particular, Rockafellar and Wets use convex, nonnegative, and “level-bounded” aug-
menting functions (i.e., all lower level sets are bounded) to construct augmented
Lagrangian functions and to show, under coercivity assumptions, that there is no dual-
ity gap between the nonconvex primal problem and the corresponding augmented
dual problem. This analysis is extended by Huang and Yang [9] to nonnegative aug-
menting functions on which no convexity requirement is imposed, again under coer-
civity assumptions. Rubinov et al. [14] study the zero duality gap property for an
augmented dual problem constructed using a family of augmenting functions. In par-
ticular, this work considers a family of augmenting functions that satisfy an almost
peak at zero property, a property less restrictive than the level-boundedness. Neces-
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Fig. 2 Geometric primal and
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sary and sufficient conditions for no duality gap are provided using tools from abstract
convexity (see [15, 16]), under the assumption that the augmenting family contains an
augmenting function minorizing the primal function.

In this paper, we present a geometric framework to analyze duality for nonconvex
optimization problems using nonlinear/augmented Lagrangian functions. We consider
convex augmenting functions that need not satisfy level-boundedness assumptions.
To capture the essential aspects of nonconvex optimization duality, we consider two
simple geometric optimization problems that are defined in terms of a nonempty
set V ⊂ R

m × R that intersects the vertical axis {(0, w) | w ∈ R}, i.e., the w-axis. In
particular, we consider the following:

• Geometric primal problem: We would like to find the minimum value intercept of
the set V and the w-axis.

• Geometric dual problem: Consider surfaces
{(

u, φc,µ(u)
) | u ∈ R

m
}

that lie below
the set V and φc,µ: Rm �→ R has the following form

φc,µ(u) = −cσ(u) − µ′u + ξ ,

where σ is a convex augmenting function, c ≥ 0 is a scaling (or penalty) parameter,
µ is a vector in R

m, and ξ is a scalar. We would like to find the maximum intercept
of such a surface with the w-axis (see Fig. 1c, d).

Figure 1 suggests that the optimal value of the dual problem is no higher than the
optimal value of the primal problem, i.e., a primal–dual relation known as the weak
duality. We are interested in characterizing the primal–dual problems for which the
two optimal values are equal, i.e., the problems for which a relation known as the
strong duality holds. In particular, our objective is to establish necessary and sufficient
conditions for strong duality for geometric primal and dual problems. Also, we are
interested in the implications for the constrained nonconvex optimization problems
from the aspects of Lagrangian relaxation and penalty methods. We show that our
geometric approach provides a unified framework for studying both of these aspects.

We consider applications of the strong duality results of the geometric frame-
work to (nonconvex) optimization duality. Given a primal optimization problem, we
define the augmented Lagrangian function, which is used to construct the augmented
dual problem. The augmenting functions we consider do not require level-bounded
assumptions as in Rockafellar and Wets [13] and Huang and Yang [9]. They are related
to the peak at zero functions studied by Rubinov et al. [14] (see Sect. 4). Using our
results from the geometric framework, we provide necessary and sufficient conditions
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for the strong duality between the primal optimization problem and the augmented
dual problem.

Finally, we consider a general class of penalty methods for constrained optimization
problems. We show that our geometric approach can be used to establish the conver-
gence of the optimal values of a sequence of penalized optimization problems to the
optimal value of the constrained optimization problem. The convergence behavior of
penalty methods is typically analyzed under the assumption that the optimal solution
set of the penalized problem is nonempty and compact (see [1, 5, 10, 11). Here, we
consider a larger class of penalty functions that need not be continuous, real-val-
ued, or identically equal to 0 over the feasible set (see [10]), and provide necessary
and sufficient conditions for convergence without imposing existence or compactness
assumptions.

The paper is organized as follows: in Sect. 2, we introduce our geometric approach in
terms of a nonempty set V and separating augmenting functions. In Sect. 3, we present
some properties of the set V and the augmenting functions, and analyze implications
related to separation properties. In Sect. 4, we present our separation theorem. In
particular, we discuss sufficient conditions on augmenting functions and the set V that
guarantee the separation of this set and a vector (0, w0) that does not belong to the
closure of the set V. In Sect. 5, we use the separation result to provide necessary and
sufficient conditions for strong duality for the geometric primal and dual problems.
In Sects. 6 and 7, we apply our results to nonconvex optimization duality and penalty
methods using the primal function of the constrained optimization problem.

1.1 Notation, terminology, and basics

For a scalar sequence {γk} approaching the zero value monotonically from above, we
write γk ↓ 0. We view a vector as a column vector, and we denote the inner product
of two vectors x and y by x′y.

For any vector u ∈ R
n, we can write

u = u+ + u− with u+ ≥ 0 and u− ≤ 0,

where the vector u+ is the component-wise maximum of u and the zero vector, i.e.,

u+ = (max{0, u1}, . . . , max{0, un})′

and the vector u− is the component-wise minimum of u and the zero vector, i.e.,

u− = (min{0, u1}, . . . , min{0, un})′ .

For a function f : R
n �→ [−∞, ∞], we denote the domain of f by dom(f ), i.e.,

dom(f ) = {x ∈ R
n | f (x) < ∞}.

We denote the epigraph of f by epi(f ), i.e.,

epi(f ) = {(x, w) ∈ R
n × R | f (x) ≤ w}.

For any scalar γ , we denote the (lower) γ -level set of f by Lf (γ ), i.e.,

Lf (γ ) = {x ∈ R
n | f (x) ≤ γ }.

We say that the function f is level-bounded when the set Lf (γ ) is bounded for every
scalar γ .
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We denote the closure of a set X by cl(X). We define a cone K as a set of all vectors
x such that λx ∈ K whenever x ∈ K and λ ≥ 0. For a given nonempty set X, the cone
generated by the set X is denoted by cone(X) and is given by

cone(X) = {y | y = λx for some x ∈ X and λ ≥ 0}.
When establishing separation results, we use the notion of a recession cone of a set.
In particular, the recession cone of a set C is denoted by C∞ and is defined as follows.

Definition 1 (Recession cone) The recession cone C∞ of a nonempty set C is given
by

C∞ = {d | λkxk → d for some {xk} ⊂ C and {λk} ⊂ R with λk ≥ 0, λk → 0} .

A direction d ∈ C∞ is referred to as a recession direction of the set C.
Some basic properties of a recession cone are given in the following lemma (cf.

[13], Sect. 3B).

Lemma 1 (Recession cone properties) The recession cone C∞ of a nonempty set C
is a closed cone. When C is a cone, we have C∞ = (cl(C))∞ = cl(C).

2 Geometric approach

In this section, we introduce primal and dual problems in our geometric framework.
We also establish the weak duality relation between the primal optimal and the dual
optimal values.

2.1 Geometric primal and dual problems

Consider a nonempty set V ⊂ R
m × R that intersects the w-axis, i.e., contains at least

one point of the form (0, w) with w ∈ R. The geometric primal problem consists of
determining the minimum value intercept of V and the w-axis, i.e.,

inf
(0,w)∈V

w.

We denote the primal optimal value by w∗.
To define the geometric dual problem, we consider the following class of convex

augmenting functions.

Definition 2 A function σ : R
m �→ (−∞, ∞] is called an augmenting function if it is

convex, not identically equal to 0, and taking zero value at the origin,

σ(0) = 0.

This definition of augmenting function is motivated by the one introduced by
Rockafellar and Wets [13] (see there Definition 11.55). Note that an augmenting
function is a proper function.

The geometric dual problem considers surfaces
{(

u, φc,µ(u)
) | u ∈ R

m
}

that lie be-
low the set V. The function φc,µ : R

m �→ R has the following form

φc,µ(u) = −cσ(u) − µ′u + ξ ,
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Fig. 3 Illustration of the closure of the cones generated, respectively, by the set V and by the set Ṽ,
which is an upward translation of the set V

where σ is an augmenting function, c ≥ 0 is a scaling (or penalty) parameter, µ ∈ R
m,

and ξ is a scalar. This surface can be expressed as {(u, w) ∈ R
m×R | w+cσ(u)+µ′u = ξ}

and thus intercepts the vertical axis {(0, w) | w ∈ R} at the level ξ . It is below V if and
only if

w + cσ(u) + µ′u ≥ ξ for all (u, w) ∈ V.

Therefore, among all surfaces that are defined by an augmenting function σ , a scalar
c ≥ 0, and a vector µ ∈ R

m and that support the set V from below, the maximum
intercept with the w-axis is given by

d(c, µ) = inf
(u,w)∈V

{
w + cσ(u) + µ′u

}
.

The dual problem consists of determining the maximum intercept of such surfaces
with the w-axis over c ≥ 0 and µ ∈ R

m, i.e.,

sup
c≥0, µ∈Rm

d(c, µ).

We denote the dual optimal value by d∗. From the construction of the dual prob-
lem, we can see that the dual optimal value d∗ does not exceed w∗ (see Fig. 2), i.e.,
the weak duality relation

d∗ ≤ w∗

holds. We say that there is zero duality gap when d∗ = w∗, and there is a duality gap
when d∗ < w∗.

The weak duality relation is formally established in the following proposition.

Proposition 1 (Weak duality) The dual optimal value does not exceed the primal
optimal value, i.e.,

d∗ ≤ w∗.

Proof For any augmenting function σ , scalar c ≥ 0, and vector µ ∈ R
m, we have

d(c, µ) = inf
(u,w)∈V

{w + cσ(u) + µ′u} ≤ inf
(0,w)∈V

w = w∗.
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Therefore

d∗ = sup
c≥0, µ∈Rm

d(c, µ) ≤ w∗.

��
2.2 Separating surfaces

We consider a nonempty set V ⊂ R
m × R and a vector (0, w0) that does not belong

to the closure of the set V. We are interested in conditions guaranteeing that cl(V)

and the given vector can be separated by a surface
{
(u, φc,µ(u)) | u ∈ R

m
}
, where the

function φc,µ has the form

φc,µ(u) = −cσ(u) − µ′u + ξ

for an augmenting function σ , vector µ ∈ R
m, and scalars c > 0 and ξ . In the following

sections, we will provide conditions under which the separation can be realized using
the augmenting function only, i.e., µ can be taken equal to 0 in the separating concave
surface

{
(u, φc,µ(u)) | u ∈ R

m
}
. In particular, we say that the augmenting function σ

separates the set V and the vector (0, w0) ∈ cl(V) when for some c ≥ 0,

w + cσ(u) ≥ w0 for all (u, w) ∈ V.

We also say that the augmenting function σ strongly separates the set V and the vector
(0, w0) ∈ cl(V) when for some c ≥ 0 and ξ ∈ R,

w + cσ(u) ≥ ξ > w0 for all (u, w) ∈ V.

3 Preliminary results

Our focus is on the separation of a given set V from a vector (0, w0) that does not
belong to the closure of the set V, where the separation is realized through some
augmenting function. In this section, we establish some properties of the set V and
augmenting function σ , which will be essential in our subsequent separation results.

3.1 Properties of the set V

We first present some properties of the set V and establish their implications.

Definition 3 We say that a set V ⊂ R
m × R is extending upward in w-space if for

every vector (ū, w̄) ∈ V, the half-line {(ū, w) | w ≥ w̄} is contained in V.

Definition 4 We say that a set V ⊂ R
m × R is extending upward in u-space if for

every vector (ū, w̄) ∈ V, the cone {(u, w̄) | u ≥ ū} is contained in V.

These two properties are satisfied, for example, when the set V is the epigraph of
a nonincreasing function. For the sets that are extending upward in w-space, we have
the following lemma.

Lemma 2 Let V ⊂ R
m × R be a nonempty set. Assume that the set V is extending

upward in w-space. Then, we have:
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(a) The closure cl(V) of the set V is also extending upward in w-space.
(b) For any vector (0, w0) ∈ cl(V), we have

w0 < w̄∗ = inf
(0,w)∈cl(V)

w ≤ w∗.

Proof

(a) Let (ū, w̄) be a vector that belongs to cl(V), and let w be a scalar such that w > w̄.
We prove that the vector (ū, w) belongs to cl(V), which implies that the half-line
{(ū, w) | w ≥ w̄} lies in cl(V).
Let {(ūk, w̄k)} be a sequence of vectors in V such that

(ūk, w̄k) → (ū, w̄).

Consider a sequence

{(ūk, wk)} with wk = w̄k + w − w̄ for all k

and note that

(ūk, wk) → (ū, w).

Since w > w̄, we have that

wk > w̄k for all k.

Because (ūk, w̄k) ∈ V for all k and the half-line {(ū, w) | w ≥ w̄} lies in the set V
for every (ū, w̄) ∈ V, we further have that

(ūk, wk) ∈ V for all k.

This relation and (ūk, wk) → (ū, w) imply that (ū, w) ∈ cl(V), thus showing that
the set cl(V) extends upward in w-space.

(b) We show that

w0 < w̄∗ = inf
(0,w)∈cl(V)

w ≤ w∗

for any vector (0, w0) ∈ cl(V). In particular, because V ⊂ cl(V), we have w∗ ≥ w̄∗.
Furthermore, for a vector (0, w0) ∈ cl(V), we must have w0 = w̄∗. Suppose that
w̄∗ < w0 for some vector (0, w0) ∈ cl(V). Then, because the set cl(V) extends
upward in w-space, we would have (0, w0) ∈ cl(V)—a contradiction. Hence, we
must have w0 < w̄∗. ��

For sets that are extending upward in u-space, we have the following lemma.

Lemma 3 Let V ⊂ R
m × R be a nonempty set extending upward in u-space. Then, the

closure of the cone generated by the set V is also extending upward in u-space, i.e., for
any (ū, w̄) ∈ cl(cone(V)), the cone {(u, w̄) | u ≥ ū} is contained in cl(cone(V)).

Proof Let (ū, w̄) be an arbitrary vector that belongs to cl(cone(V)), and let u ≥ ū.
Also, let e be an m-dimensional vector with all components equal to 1. We show that for
any δ > 0, we have (u + δe, w̄) ∈ cl(cone(V)), thus implying that (u, w̄) ∈ cl(cone(V))

and showing that cl(cone(V)) extends upward in u-space.
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Since (ū, w̄) ∈ cl(cone(V)), there exists a sequence of vectors {(ūk, w̄k)} ⊂ cone(V)

converging to (ū, w̄), i.e.,

(ūk, w̄k) → (ū, w̄) with (ūk, w̄k) = (ū, w̄) for all k. (1)

Because ūk → ū and u + δe > ū for any δ > 0, we may assume without loss of
generality that

ūk < (u + δe) for all k.

Since {(ūk, w̄k)} ⊂ cone(V), for all k we have

(ūk, w̄k) = λk(uk, wk) for some (uk, wk) ∈ V and λk ≥ 0. (2)

In view of (ūk, w̄k) = (ū, w̄) for all k (cf. Eq. 1), we can assume without loss of
generality that λk > 0 for all k. Hence, from the preceding two relations, we obtain

uk = 1
λk

ūk <
1
λk

(u + δe) for all k.

The set V extends upward in u-space and therefore, the relations (uk, wk) ∈ V and
uk < 1

λk
(u + δe) for all k imply that

( 1
λk

(u + δe), wk

)
∈ V for all k.

By multiplying this relation with λk and using λkwk = w̄k (cf. Eq. 2), we obtain

(u + δe, λkwk) = (u + δe, w̄k) ∈ cone(V) for all k.

By letting k → ∞ in the preceding relation and by using w̄k → w̄ (cf. Eq. 1), we
further obtain

(u + δe, w̄k) → (u + δe, w̄),

implying that (u + δe, w̄) ∈ cl(cone(V)). Finally, by taking δ → 0, we obtain (u, w̄) ∈
cl(cone(V)). ��

The proofs of our separation results require the separation of the half-line
{(0, w) | w ≤ w̄} for some w̄ < 0 and the cone generated by the set V. However,
complications may arise when the set V has an infinite slope around the origin, in
which case the cone generated by the set V cannot be separated from the half-line
{(0, w) | w ≤ w̄} with w̄ < 0. To avoid such complications without imposing additional
restrictions on the set V, we consider a cone generated by a slightly upward translation
of the set V in w-space, a set we denote by Ṽ (see Fig. 3).

For the separation results, another important characteristic of the set V is the “bot-
tom-shape” of V. In particular, it is desirable that the changes in w are commensurate
with the changes in u for (u, w) ∈ V, i.e., the ratio of ‖u‖ and w-values is asymptotically
finite, as w decreases. To characterize this, we use the notion of recession directions
and recession cone of a nonempty set (see Sect. 1.1).
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In the next lemma, we study the implications of the recession directions of set V
on the properties of the cone generated by the set Ṽ. This result plays a key role in
the subsequent development.

Lemma 4 Let V ⊂ R
m × R be a nonempty set. Assume that w∗ = inf(0,w)∈V w is

finite, and that V extends upward in u-space and w-space. Assume that (0, −1) is not a
recession direction of V, i.e.,

(0, −1) /∈ V∞.

Let (0, w0) be a vector that does not belong to cl(V). For a given ε > 0, consider the set
Ṽ given by

Ṽ = {(u, w) | (u, w − ε) ∈ V} (3)

and the cone generated by Ṽ, denoted by K. Then, the vector (0, w0) does not belong to
the closure of the cone K generated by Ṽ, i.e.,

(0, w0) ∈ cl(K).

Proof According to Lemma 2(b), we have that

w0 < w̄∗ = inf
(0,w)∈cl(V)

w ≤ w∗.

Since by assumption w∗ is finite, it follows that w̄∗ is finite. By using the translation of
space along w-axis if necessary, without loss of generality, we may assume that

w̄∗ = 0, (4)

so that

w0 < 0. (5)

For a given ε > 0, consider the set Ṽ defined in Eq. 3 and let K be the cone
generated by Ṽ. To obtain a contradiction, assume that (0, w0) ∈ cl(K). Since cl(K)

is a cone, by Recession Cone Properties (cf. Lemma 1) it follows that cl(K) = K∞.
Therefore, the vector (0, w0) is a recession direction of K, and therefore, there exist a
vector sequence {(uk, wk)} and a scalar sequence {λk} such that

λk(uk, wk) → (0, w0) with {(uk, wk)} ⊂ K, λk ≥ 0, λk → 0.

Since the cone K is generated by the set Ṽ, for the sequence {(uk, wk)} ⊂ K we have

(uk, wk) = βk(ūk, w̄k), (ūk, w̄k) ∈ Ṽ, βk ≥ 0 for all k.

Consider now the sequence {λkβk(ūk, w̄k)}. From the preceding two relations, we
have λkβk(ūk, w̄k) = λk(uk, wk) and

λkβk(ūk, w̄k) → (0, w0) with (ūk, w̄k) ∈ Ṽ and λkβk ≥ 0. (6)

Because the set V extends upward in w-space and the set Ṽ is a translation of V up
w-axis [cf. Eq. (3)], we have that (u, w) ∈ V for any (u, w) ∈ Ṽ. In particular, since
(ūk, w̄k) ∈ Ṽ for all k, it follows that

(ūk, w̄k) ∈ V for all k. (7)
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In view of λkβk ≥ 0, we have lim infk→∞ λkβk ≥ 0, and there are three cases to
consider.
Case 1 lim infk→∞ λkβk = 0.
We can assume without loss of generality that λkβk → 0. Then, from Eq. 6 and the
fact (ūk, w̄k) ∈ V for all k (cf. Eq. 7), it follows that the vector (0, w0) is a recession
direction of the set V. Since w0 < 0 (cf. Eq. 16), this implies that the direction (0, −1)

is a recession direction of V− a contradiction.
Case 2 lim infk→∞ λkβk = ∞.

In this case, we have limk→∞ λkβk = ∞, and by using this relation in Eq. 6, we
obtain

lim
k→∞

(ūk, w̄k) = (0, 0).

Therefore (0, 0) ∈ cl(Ṽ), and by the definition of the set Ṽ (cf. Eq. 3), it follows that
(0, −ε) ∈ cl(V). But this contradicts the relation w̄∗ = 0 (cf. Eq. 4).
Case 3 lim infk→∞ λkβk = ξ > 0.
We can assume without loss of generality that λkβk → ξ > 0 and λkβk > 0 for all k.
Then, from Eq. 6 we have for the sequence {(ūk, w̄k)},

lim
k→∞

(ūk, w̄k) = lim
k→∞

(0, w0)

λkβk
= 1

ξ
(0, w0) with ξ > 0. (8)

From the preceding relation, it follows that

(ūk, w̄k) → (0, w̃) with w̃ = w0

ξ
< 0.

Because (ūk, w̄k) ∈ V for all k (cf. Eq. 7) it follows that the vector (0, w̃) with w̃ < 0
lies in the closure of the set V. But this contradicts the relation w̄∗ = 0 (cf. Eq. 4). ��

Note that the preceding result cannot be extended to the cone generated by the
set V. In particular, the relation (0, w0) /∈ cl(V) for some w0 < 0 need not imply
(0, w0) /∈ cl(cone(V)). To see this, let the set V be the epigraph of the function
f (u) = −√

u for u ≥ 0 and f (u) = +∞ otherwise. Here, a vector (0, w0) with w0 < 0
does not belong to the closure of the set V, while the half-line {(0, w) | w ≤ 0} lies in
the closure of the cone generated by V.

The preceding result will be essential for proving our main result in Sect. 4 for
separating a set from the half-line {(0, w) | w ≤ w̄} for some w̄ < 0. This result may be
of independent interest in the context of abstract convexity (see [15]).

3.2 Separation properties of augmenting functions

In this section, we analyze some properties of nonnegative augmenting functions.
These properties are crucial for our proof of the separation result in Sect. 4.

We consider a given nonempty and convex set, related to a level set of σ , and a
nonempty cone C ⊂ R

m × R. We show that, when the given set has no vector in
common with the cone C, we can find a larger convex set X ⊂ R

m × R having no
vector in common with the cone C.

Lemma 5 Let σ : R
m �→ (−∞, ∞] be an augmenting function taking nonnegative

values, i.e.,
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σ(u) ≥ 0 for all u.

LetC ⊂ R
m × R be a nonempty cone, and let w̃ be a scalar with w̃ < 0. Furthermore,

let γ > 0 be a scalar such that the set {(u, w̃) | u ∈ Lσ (γ )} has no vector in common
with the cone C, i.e.,

{(u, w̃) | u ∈ Lσ (γ )} ∩ C = ∅. (9)

Then, the set X defined by

X =
{
(u, w) ∈ R

m × R

∣
∣
∣ w ≤ −|w̃|

γ
σ(u) + w̃

}
(10)

has no vector in common with the cone C.

Proof To obtain a contradiction, assume that there exists a vector (û, ŵ) such that

(û, ŵ) ∈ X ∩ C. (11)

By the definition of X (cf. Eq. 10), and the relations w̃ < 0 and σ(u) ≥ 0 for all u, it
follows that

ŵ ≤ w̃ < 0. (12)

Note that we can view the set X as the zero-level set of the function F(u, w) =
w − w̃ + |w̃|

γ
σ (u), i.e.,

X = {
(u, w) ∈ R

m × R | F(u, w) ≤ 0
}

.

The function F(u, w) is convex by the convexity of σ (cf. Definition 2), and therefore
the set X is convex. Furthermore, X contains the vector (0, w̃) since σ(0) = 0 by the
definition of the augmenting function.

Consider now the scalar

α̂ = w̃
ŵ

,

which satisfies α̂ ∈ (0, 1] by Eq. 12. From the convexity of set X and the relations
(0, w̃) ∈ X and (û, ŵ) ∈ X, it follows that

(1 − α̂)(0, w̃) + α̂(û, ŵ) = (α̂û, (1 − α̂)w̃ + w̃) ∈ X.

Using the definition of set X (cf. Eq. 10), we obtain

(1 − α̂)w̃ ≤ −|w̃|
γ

σ(α̂û).

Since w̃ < 0, it follows that

|w̃|
γ

σ(α̂û) ≤ −(1 − α̂)w̃ < −w̃ = |w̃|,

implying that

σ(α̂û) ≤ γ .

Hence, the vector α̂û belongs to level set Lσ (γ ), and therefore

(α̂û, w̃) ∈ {(u, w̃) | u ∈ Lσ (γ )}.
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The vector (û, ŵ) lies in the cone C (cf. Eq. 11) and, because α̂ > 0, the vector
α̂(û, ŵ) = (α̂û, w̃) also lies in C. Therefore

(α̂û, ŵ) ∈ {(u, w̃) | u ∈ Lσ (γ )} ∩ C,

contradicting the assumption that the set {(u, w̃) | u ∈ Lσ (γ )} and the cone C have no
common vectors (cf. Eq. 9). ��

The implication of Lemma 5 is that the set S = {(u, 2w̃) | u ∈ Lσ (γ )} and the cone
C can be separated by a concave function

φ(u) = −|w̃|
γ

σ(u) + w̃ for all u ∈ R
m.

In particular, Lemma 5 asserts that

w ≤ φ(u) < z for all (u, w) ∈ X and (u, z) ∈ C.

Furthermore, it can be seen that the set S is contained in the set X for w̃ < 0, and
therefore

w ≤ φ(u) < z for all (u, w) ∈ S and (u, z) ∈ C,

thus showing that φ separates the set S and the cone C.

4 Separation theorem

In this section, we discuss some sufficient conditions on augmenting functions and
the set V that guarantee the separation of this set and a vector (0, w0) not belonging
to the closure of the set V. In particular, throughout this section, we consider a set
V that has a nonempty intersection with w-axis, extends upward both in u-space and
w-space, and does not have (0, −1) as its recession direction. These properties of V
are formally imposed in the following assumption.

Assumption 1 Let V ⊂ R
m × R be a nonempty set that satisfies the following:

(a) The primal optimal value is finite, i.e., w∗ = inf(0,w)∈V w is finite.
(b) The set V extends upward in u-space and w-space.
(c) The vector (0, −1) is not a recession direction of V, i.e.,

(0, −1) ∈ V∞.

Assumption 1(a) states the requirement that the set V intersects the w-axis.
Assumption 1(b) is satisfied, for example, when V is the epigraph of a nonincreasing
function. Assumption 1(c) formalizes the requirement that the changes in w are com-
mensurate with the changes in u for (u, w) ∈ V. It can be viewed as a requirement on
the rate of decrease of w with respect to u. In particular, suppose that −w ≈ O

(‖u‖β
)

for some scalar β and all (u, w) ∈ V. Then, we have

1
|w| (u, w) ≈

(
O

(
‖u‖1−β

)
, −1

)
.

Hence, for β < 0, as u → 0, we have w → −∞ and 1
|w| (u, w) → (0, −1), implying

that the direction (0, −1) is a recession direction of V (see Definition 1). However, for
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β > 0, we have w → −∞ as u → ∞, and 1
|w| (u, w) → (0, −1) as u → ∞ if and only if

1 − β < 0. Thus, the vector (0, −1) is again a recession direction of V for β > 1, and it
is not a recession direction of V for 0 ≤ β ≤ 1.

We present a separation result for nonnegative augmenting functions that have an
additional property related to their behavior in the vicinity of the set of vectors u
with u ≤ 0. In particular, we consider augmenting functions that satisfy the following
assumption.

Assumption 2 Let σ be an augmenting function with the following properties:

(a) The function σ is nonnegative,

σ(u) ≥ 0 for all u.

(b) Given a sequence {uk} ⊂ R
m, the convergence of σ(uk) to zero implies the

convergence of the nonnegative part of the sequence {uk} to zero, i.e.,

σ(uk) → 0 ⇒ u+
k → 0,

where u+ = (max{0, u1}, . . . , max{0, um})′.
To provide intuition for the property stated in Assumption 2(b), consider the non-

positive orthant R
m− given by

R
m− = {u ∈ R

m | u ≤ 0}.
It can be seen that the vector v− defined by

v− = (min{0, v1}, . . . , min{0, vm})′

is the projection of a vector v on the set R
m− , i.e.,

min
u∈R

m−
‖v − u‖ = ‖v − v−‖.

Since v = v+ + v−, we have

dist(v, Rm−) = min
u∈R

m−
‖v − u‖ = ‖v − v−‖ = ‖v+‖. (13)

Thus, Assumption 2(b) is equivalent to the following: for any sequence {uk}, the con-
vergence of σ(uk) to zero implies that the distance between uk and R

m− converges to
zero, i.e.,

σ(uk) → 0 ⇒ dist(uk, Rm−) → 0.

It can be further seen that Assumption 2(b) is equivalent to the following condition:
for all δ > 0, there holds

inf
{u | dist(u,Rm−)≥δ}

σ(u) > 0. (14)

To see this, assume first that Assumption 2(b) holds and assume to arrive at a contra-
diction that there exists some δ > 0 such that

inf
{u | dist(u,Rm−)≥δ}

σ(u) = 0.
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This implies that there exists a sequence {uk} such that σ(uk) → 0 and ‖u+
k ‖ ≥ δ for all

k (cf. Eq. 13), contradicting Assumption 2(b). Conversely, assume that condition (14)
holds. Let {uk} be a sequence with σ(uk) → 0, and assume that lim supk→∞ ‖u+

k ‖ > 0.
This implies the existence of some δ > 0 such that along a subsequence, we have
dist(uk, Rm−) > δ for all k sufficiently large. Since σ(uk) → 0, this contradicts condi-
tion (14).

Assumption 2(b) is related to the peak at zero condition (see [14]) which can be
expressed as follows: for all δ > 0, there holds

inf{u | ‖u‖≥δ} σ(u) > 0.

This condition was studied by Rubinov et al. [14] to provide zero duality gap results for
arbitrary dualizing parametrizations under the assumption that there exists an aug-
menting function minorizing the primal function. In this paper, we focus on the weaker
condition, Assumption 2(b), which seems suitable for the study of parametrizations
that yield nondecreasing primal functions (see Sect. 5).

The following are some examples of the functions σ(u) for u = (u1, . . . , um) that
satisfy Assumption 2:

σ(u) = max{0, u1, . . . , um},

σ(u) =
m∑

i=1

(max{0, ui})β with β > 0,

(cf. [10]), where β = 1 and β = 2 are among the most popular choices (e.g. see [11]);

σ(u) = u′Qu,

σ(u) = (u+)′Qu+ with u+
i = max{0, ui},

(cf. [10]), where Q is a symmetric positive definite matrix;

σ(u) = max{0, a1(e
u1 − 1), . . . , am(eum − 1)},

σ(u) =
m∑

i=1

max{0, ai(eui − 1)},

(cf. [17]), where ai > 0 for all i.
Moreover, Assumption 2 is satisfied by any nonnegative convex function with

σ(0) = 0 and with the set of minima over R
m consisting of the zero vector only,

arg min
u∈Rm

σ(u) = {0},
i.e., level-bounded augmenting functions studied by Rockafellar and Wets [13], and
Huang and Yang [9].

Proposition 2 (Nonnegative augmenting function) Let V ⊂ R
m × R be a nonempty

set satisfying Assumption 1. Let σ be an augmenting function satisfying Assumption 2.
Then, the set V and a vector (0, w0) that does not belong to the closure of V can be
strongly separated by the function σ , i.e., there exist scalars c > 0 and ξ such that

w + cσ(u) ≥ ξ > w0 for all (u, w) ∈ V.
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Proof By Lemma 2(a), we have that

w0 < w̄∗ = inf
(0,w)∈cl(V)

w ≤ w∗.

Since w∗ is finite (cf. Assumption 1(a)), it follows that w̄∗ is finite. By using the trans-
lation of space along w-axis if necessary, without loss of generality, we may assume
that

w̄∗ = 0, (15)

so that

w0 < 0. (16)

Consider an upward translation of set V given by

Ṽ =
{
(u, w)

∣
∣
∣
(

u, w + w0

4

)
∈ V

}
(17)

and the cone generated by Ṽ, denoted by K. The proof relies on constructing a con-
vex set X using the augmenting function σ that contains the vector (0, w0/2), extends
downward w-axis, and does not have any vector in common with the closure of K.
The set X is actually a surface that separates (0, w0/2) and the closure of K, and it
also separates (0, w0) and V.

In particular, the proof is given in the following steps:
Step 1 We first show that there exists some γ > 0 such that

{(u, w0/2) | u ∈ Lσ (γ )} ∩ cl(K) = ∅.

To arrive at a contradiction, suppose that the preceding relation does not hold. Then,
there exist a sequence {γk} with γk ↓ 0 and a sequence {uk} such that

σ(uk) ≤ γk, (uk, w0/2) ∈ cl(K). (18)

Since σ(u) ≥ 0 for all u (cf. Assumption 2(a)) and γk ↓ 0, it follows that

lim
k→∞

σ(uk) = 0,

implying by Assumption 2(b) that

u+
k → 0.

Note that we have

uk = u+
k + u−

k ≤ u+
k for all k.

By Assumption 1, the set V is extending upward in u-space, and so does the set Ṽ,
an upward translation of the set V (cf. Eq. 17). Consequently, by Lemma 3, the clo-
sure cl(K) of the cone K generated by Ṽ is also extending upward in u-space. Since
(uk, w0/2) ∈ cl(K) (cf. Eq. 18) and uk ≤ u+

k for all k, it follows that

(u+
k , w0/2) ∈ cl(K) for all k.

Furthermore, because u+
k → 0, we obtain (0, w0/2) ∈ cl(K), and therefore

(0, w0) ∈ cl(K).
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On the other hand, since (0, w0) ∈ cl(V), by Lemma 4 we have that (0, w0) ∈ cl(K),
contradicting the preceding relation. Thus, the set {(u, w0/2) | u ∈ Lσ (γ )} and the
cone cl(K) do not have any point in common, i.e.,

{(u, w0/2) | u ∈ Lσ (γ )} ∩ cl(K) = ∅. (19)

Step 2 We consider the set X given by

X =
{
(u, w) ∈ R

m × R

∣
∣
∣ w ≤ −|w0|

2γ
σ(u) + w0

2

}
,

and we prove that this set has no vector in common with the cone cl(K). We show this
by using Lemma 5 with the identification as follows:

w̃ = w0

2
, C = cl(K). (20)

By Assumption 2(a), the augmenting function σ is nonnegative. Furthermore, note
that w̃ = w0/2 < 0 because w0 < 0. In view of Eq. (19), we have that the set
{(u, w0/2) | u ∈ Lσ (γ )} and the cone cl(K) have no vector in common. Thus, Lemma 5
implies that the set X has no vector in common with the cone cl(K), i.e., X ∩cl(K) = ∅.
From this and the definition of X, it follows that

w > −|w0|
2γ

σ(u) + w0

2
for all (u, w) ∈ cl(K).

The cone K is generated by the set Ṽ, so that the preceding relation holds for all
(u, w) ∈ Ṽ, implying that

w − w0

4
+ cσ(u) >

w0

2
for all (u, w) ∈ V and c = |w0|

2γ
.

Furthermore, since w0 < 0, it follows that

w + cσ(u) ≥ ξ > w0 for all (u, w) ∈ V and ξ = 3w0

4
,

thus completing the proof. ��
Note that Proposition 2 shows that for a set V satisfying Assumption 1 and an

augmenting function σ satisfying Assumption 2, we can take µ = 0 in the separating
concave surface

{
(u, φc,µ(u)) | u ∈ R

m
}
, where

φc,µ(u) = −cσ(u) − µ′u + ξ ,

i.e., separation of V from a vector that does not belong to the closure of V can be
realized through the augmenting function only.

5 Application to constrained optimization duality

In this section, we use the separation result of Sect. 4 to provide necessary and suffi-
cient conditions that guarantee that the optimal values of the geometric primal and
dual problems are equal. We then discuss the implications of these conditions for
constrained (nonconvex) optimization problems.
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5.1 Necessary and sufficient conditions for geometric zero duality gap

Recall that for a given nonempty set V ⊂ R
m × R, we define the geometric primal

problem as

inf
(0,w)∈V

w, (21)

and denote the primal optimal value by w∗. For a given augmenting function σ , scalar
c ≥ 0, and vector µ ∈ R

m, we define a dual function d(c, µ) as

d(c, µ) = inf
(u,w)∈V

{w + cσ(u) + µ′u}.

We consider the geometric dual problem

sup
c≥0, µ∈Rm

d(c, µ) (22)

and denote the dual optimal value by d∗.
In what follows, we use an additional assumption on the augmenting function.

Assumption 3 (Continuity at the origin) Let σ be an augmenting function. The
augmenting function σ is continuous at u = 0.

Since an augmenting function σ is convex by definition, the assumption that σ is
continuous at u = 0 holds when 0 is in the relative interior of the domain of σ (see
[3, 12]). Note that all examples of augmenting functions we have considered in Sect.
4 satisfy this condition.

We now present a necessary condition for zero duality gap.

Proposition 3 (Necessary conditions for zero duality gap) Let V ⊂ R
m × R be a

nonempty set. Let σ be an augmenting function that satisfies Assumption 3. Consider
the geometric primal and dual problems defined in Eqs. (21) and (22). Assume that
there is zero duality gap, i.e., d∗ = w∗. Then, for any sequence {(uk, wk)} ⊂ V with
uk → 0, we have

lim inf
k→∞

wk ≥ w∗.

Proof Let {(uk, wk)} ⊂ V be a sequence such that uk → 0. By definition, the
augmenting function σ(u) satisfies σ(0) = 0 (cf. Definition 2). Using this and the
continuity of σ(u) at u = 0 (cf. Assumption 3), we obtain for all c ≥ 0 and µ ∈ R

m,

lim inf
k→∞

wk = lim inf
k→∞

wk + cσ(0) + µ′0

= lim inf
k→∞

{wk + cσ(uk) + µ′uk}
≥ inf

(u,w)∈V
{w + cσ(u) + µ′u}

= d(c, µ).

Hence

lim inf
k→∞

wk ≥ sup
c≥0, µ∈Rm

d(c, µ) = d∗

and since d∗ = w∗, it follows that lim infk→∞ wk ≥ w∗. ��
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We next provide sufficient conditions for zero duality gap using the assumptions of
Sect. 4 on set V and augmenting function σ .

Proposition 4 (Sufficient conditions for zero duality gap) Let V ⊂ R
m × R be a

nonempty set. Consider the geometric primal and dual problems defined in Eqs. (21)
and (22). Assume that for any sequence {(uk, wk)} ⊂ V with uk → 0, we have

lim inf
k→∞

wk ≥ w∗.

Assume that the set V satisfies Assumption 1 and the augmenting function σ satisfies
Assumption 2. Then, there is zero duality gap, i.e., d∗ = w∗.

Proof By Assumption 1(a), we have that w∗ is finite. Let ε > 0 be arbitrary, and
consider the vector (0, w∗ −ε). We show that (0, w∗ −ε) does not belong to the closure
of the set V. To obtain a contradiction, assume that (0, w∗ − ε) ∈ cl(V). Then, there
exists a sequence {(uk, wk)} ⊂ V with uk → 0 and wk → w∗ − ε, contradicting the
assumption that lim infk→∞ wk ≥ w∗. Hence, (0, w∗−ε) does not belong to the closure
of V.

Consider the set V that satisfies Assumption 1 and the augmenting function σ that
satisfies Assumption 2. Since (0, w∗ −ε) ∈ cl(V), by Proposition 2, it follows that there
exist scalars c ≥ 0 and ξ such that

inf
(u,w)∈V

{w + cσ(u)} ≥ ξ > w∗ − ε.

Therefore

d(c, 0) > w∗ − ε,

implying that

d∗ = sup
c≥0, µ∈Rm

d(c, µ) > w∗ − ε.

By letting ε → 0, we obtain

d∗ ≥ w∗,

which together with the weak duality relation (d∗ ≤ w∗) implies that d∗ = w∗. ��
5.2 Constrained optimization duality

We consider the following constrained optimization problem

min f0(x)

s.t. x ∈ X, f (x) ≤ 0,
(23)

where X is a nonempty subset of R
n,

f (x) = (f1(x), . . . , fm(x))

and fi : R
n �→ (−∞, ∞] for i = 0, 1, . . . , m. We refer to this as the primal problem, and

denote its optimal value by f ∗.
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For the primal problem, we define a dualizing parametrization function f̄ : R
n ×

R
m �→ (−∞, ∞] as

f̄ (x, u) =
{

f0(x), if f (x) ≤ u,
+∞, otherwise.

(24)

Given an augmenting function σ , we define the augmented Lagrangian function as

l(x, c, µ) = inf
u∈Rm

{f̄ (x, u) + cσ(u) + µ′u}

and the augmented dual function as

q(c, µ) = inf
x∈X

l(x, c, µ).

We consider the problem

max q(c, µ)

s.t. c ≥ 0, µ ∈ R
m.

(25)

We refer to this as the augmented dual problem, and denote its optimal value by q∗.
We say that there is zero duality gap when q∗ = f ∗, and we say that there is a duality
gap when q∗ < f ∗.

5.3 Weak duality

The following proposition shows the weak duality relation between the optimal values
of the primal problem and the augmented dual problem.

Proposition 5 (Weak duality) The augmented dual optimal value does not exceed
the primal optimal value, i.e.,

q∗ ≤ f ∗.

Proof Using the definition of the dualizing parametrization function (cf. Eq. 24),
we can write q(c, µ) as

q(c, µ) = inf
u∈Rm

inf
x∈X

f (x)≤u

{f0(x) + cσ(u) + µ′u} for all c ≥ 0, µ ∈ R
m.

Substituting u = 0 in the preceding relation and using the assumption that σ(0) = 0
(cf. Definition 2), we have

q(c, µ) ≤ inf
x∈X

f (x)≤0

{f0(x) + cσ(0)} = inf
x∈X

f (x)≤0

f0(x) = f ∗.

Therefore

q∗ = sup
c≥0, µ∈Rm

q(c, µ) ≤ f ∗.

��
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5.4 Zero duality gap

We next provide necessary and sufficient conditions for zero duality gap. In our anal-
ysis, a critical role is played by the geometric framework of Sect. 2 and the results of
Sect. 5.1, and by the primal function p : R

m �→ [−∞, ∞] of the optimization problem
(23), defined as

p(u) = inf
x∈X, f (x)≤u

f0(x).

The primal function p(u) is clearly nonincreasing in u, i.e.,

p(u) ≤ p(ũ) for u ≥ ũ. (26)

Furthermore, p(u) is related to the dualizing parametrization function f̄ (cf. Eq. 24)
as follows:

p(u) = inf
x∈X

f̄ (x, u). (27)

We next discuss some properties of the primal function and its connection to the
existence of a duality gap. The connection to the existence of a duality gap is estab-
lished through the geometric framework of Sect. 2. In particular, let V be the epigraph
of the primal function,

V = epi(p).

Then, the geometric primal value w∗ is equal to p(0),

w∗ = p(0) = f ∗.

The corresponding geometric dual problem is

max d(c, µ)

s.t. c ≥ 0, µ ∈ R
m,

where

d(c, µ) = inf
(u,w)∈V

{w + cσ(u) + µ′u} = inf{(u,w)∈Rm×R|p(u)≤w}{w + cσ(u) + µ′u}.

Using the relation between the primal function p and the dualizing parametrization
function f̄ (cf. Eq. 27), we can see that

d(c, µ) = inf
u∈Rm

inf
x∈X

{f̄ (x, u) + cσ(u) + µ′u} = q(c, µ) for all c ≥ 0, µ ∈ R
m. (28)

We now use the results of Sect. 5.1 with the identification V = epi(p) to provide
necessary and sufficient conditions for zero duality gap. These conditions involve the
lower semicontinuity of the primal function at 0 (see [3, Chap. 6, and 16, Sect. 3.1.6]
for discussions on the lower semicontinuity of the primal function). For the necessary
conditions, we assume that the augmenting function σ is continuous at u = 0, i.e., it
satisfies Assumption 3.

Proposition 6 (Necessary conditions for zero duality gap) Let σ be an augmenting
function that satisfies Assumption 3. Consider the primal problem and the augmented
dual problem defined in Eqs. 23 and 25. Assume that there is zero duality gap, i.e.,
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q∗ = f ∗. Then, the primal function p(u) is lower semicontinuous at u = 0, i.e., for all
sequences {uk} ⊂ R

m with uk → 0, we have

p(0) ≤ lim inf
k→∞

p(uk).

Proof We apply Proposition 3 where the set V is the epigraph of p, i.e.,

V = epi(p).

From the definition of p, we have

w∗ = p(0) = f ∗.

From Eq. (28), it also follows that d∗ = q∗. Hence, the assumption that q∗ = f ∗ is
equivalent to the assumption that d∗ = w∗. Let {uk} ⊂ R

m be a sequence with uk → 0.
Since {(uk, p(uk))} ⊂ epi(p), it follows by Proposition 3 that

lim inf
k→∞

p(uk) ≥ p(0),

completing the proof. ��
We next present sufficient conditions for zero duality gap.

Proposition 7 (Sufficient conditions for zero duality gap) Assume that the primal
problem (23) is feasible and bounded from below, i.e., f ∗ is finite. Assume that the
direction (0, −1) is not a recession direction of the epigraph of the primal function, i.e.,

(0, −1) /∈ (epi(p))∞.

Assume that p(u) is lower semicontinuous at u = 0. Furthermore, assume that the aug-
menting function σ satisfies Assumption 2. Then, there is zero duality gap, i.e., q∗ = f ∗.

Proof We apply Proposition 4 where the set V is the epigraph of the function p, i.e.,

V = epi(p).

From the definition of p, we have

w∗ = p(0) = f ∗.

The assumption that the primal problem (23) is feasible and bounded from below
implies that f ∗ is finite, and therefore w∗ is finite. Since V is the epigraph of a func-
tion, the set V is extending upward in w-space. Moreover, V is extending upward in
u-space because the primal function p is nonincreasing (cf. Eq. 26). Together with the
assumption that (0, −1) /∈ (epi(p))∞, we have that the set V satisfies Assumption 1.

From Eq. (28), we have d∗ = q∗. By the choice of set V, the condition

p(0) ≤ lim inf
k→∞

p(uk)

for all sequences {uk} with uk → 0 is equivalent to the condition that for every
sequence {(uk, wk)} ⊂ V with uk → 0, there holds w∗ ≤ lim infk→∞ wk. The result
then follows from Proposition 4. ��



J Glob Optim (2008) 40:545–573 567

It can be seen that the assumption of Proposition 7 that (0, −1) is not a direction
of recession of epi(p) is satisfied, for example, when infx∈X f0(x) > −∞. This relation
holds, for example, when X is compact and f0 is lower semicontinuous, or when f0 is
bounded from below, i.e., f (x) ≥ b0 for some scalar b and for all x ∈ R

n.
Generally speaking, we can view the condition (0, −1) /∈ epi(p)∞ as a requirement

on the rate of decrease of p(u) with respect to u. For example, suppose that for some
scalar β and all (u, w) ∈ epi(p), we have p(u) ≈ O

(−‖u‖β
)
. Then, similar to the

discussion in the beginning of Section 4, we can see that the vector (0, −1) /∈ epi(p)∞
when

p(u) ≈ O
(−‖u‖β

)
as ‖u‖ → ∞ and 0 ≤ β ≤ 1.

For β > 1, we have (0, −1) ∈ epi(p)∞. By viewing β as a rate of decrease of p(u) to
minus infinity, we see that when p(u) decreases to infinity at a rate faster than the
linear rate (β = 1), the vector (0, −1) is a recession direction of epi(p). When the rate
of decrease is slower than linear but at least constant (β = 0), then the vector (0, −1)

is not a recession direction of epi(p).

6 Application to penalty methods

In this section, we use the separation result of Sect. 4 to provide necessary and suffi-
cient conditions for the convergence of penalty methods. In particular, we define a
slightly different geometric dual problem suitable for the analysis of penalty meth-
ods. Based on the separation result of Sect. 4, we provide necessary and sufficient
conditions for the convergence of the geometric dual optimal values to the geometric
primal optimal value. We then discuss the implications of these conditions for the
penalty methods for constrained (nonconvex) optimization problems.

6.1 Necessary and sufficient conditions for convergence in geometric penalty
framework

Here, we consider a geometric framework similar to the framework of Sect. 2. In
particular, given a nonempty set V ⊂ R

m × R, the geometric primal problem is the
same as in Sect. 2, i.e., we want to determine the value w∗ where

w∗ = inf
(0,w)∈V

w. (29)

Given an augmenting function σ , we define a slightly different geometric problem,
which we refer to as geometric penalized problem. In the geometric penalized problem,
we want to determine the value d̃∗ where

d̃∗ = sup
c≥0

d̃(c) (30)

with

d̃(c) = inf
(u,w)∈V

{w + cσ(u)}. (31)

Note that, here, we consider concave surfaces that support the set V from below and
do not involve a linear term (see Sect. 2.2).
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It is straightforward to establish the weak duality relation between the optimal
value of the geometric primal problem and penalized problem. The proof for this
result is the same as that of Proposition 1 (where µ = 0) and, therefore, it is omitted.

Proposition 8 (Weak duality) The penalized optimal value does not exceed the pri-
mal optimal value, i.e.,

d̃∗ ≤ w∗.

We next consider necessary conditions for the convergence of the optimal values d̃(c)
of the geometric penalized problem to the geometric primal optimal value w∗. These
conditions require the continuity of the augmenting (penalty) function σ at u = 0
(cf. Assumption 3). The proof of these necessary conditions is the same as that of
Proposition 3 (where µ = 0) and, therefore, it is omitted.

Proposition 9 (Necessary conditions for geometric penalty convergence) Let V ⊂
R

m × R be a nonempty set. Let σ be an augmenting function that satisfies Assumption
3. Consider the geometric primal and penalized problems defined in Eqs. 29 and 30.
Assume that the optimal values of the geometric penalized problem converge to the
optimal value of the primal problem, i.e., limc→∞ d̃(c) = w∗. Then, for any sequence
{(uk, wk)} ⊂ V with uk → 0, we have

lim inf
k→∞

wk ≥ w∗.

We next provide sufficient conditions for zero duality gap using the assumptions of
Sect. 4 on set V and augmenting function σ .

Proposition 10 (Sufficient conditions for geometric penalty convergence) Let V ⊂
R

m × R be a nonempty set. Consider the geometric primal and penalized problems
defined in Eqs. (29) and (30). Assume that for any sequence {(uk, wk)} ⊂ V with
uk → 0, we have

lim inf
k→∞

wk ≥ w∗.

Assume further that the set V satisfies Assumption 1 and the augmenting function σ

satisfies Assumption 2. Then, the optimal values of the geometric penalized problem
d̃(c) converge to the optimal value of the primal problem w∗ as c → ∞, i.e.,

lim
c→∞ d̃(c) = w∗.

Proof Let {ck} be a nonnegative scalar sequence with ck → ∞. By the weak duality,
we have d̃(c) ≤ f ∗ for all c ≥ 0, implying that lim supk→∞ d̃(ck) ≤ w∗. Thus, it suffices
to show that

lim inf
k→∞

d̃(ck) ≥ w∗.

To arrive at a contradiction, suppose that the preceding relation does not hold. Then,
for some ε > 0,

lim inf
k→∞

d̃(ck) ≤ w∗ − 2ε. (32)



J Glob Optim (2008) 40:545–573 569

By the definition of d̃(c) (cf. Eq. 31), for each k, there exists (uk, wk) ∈ V such that

wk + ckσ(uk) ≤ d̃(ck) + ε.

Hence, by considering an appropriate subsequence in relation (32), we can assume
without loss of generality that

wk + ckσ(uk) ≤ w∗ − ε for all k. (33)

By the assumption that, for every sequence {(uk, wk)} ⊂ V with uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk, (34)

it follows that (0, w∗ − ε) does not belong to the closure of the set V, i.e.,

(0, w∗ − ε) /∈ cl(V).

Since (0, w∗ − ε) /∈ cl(V), by Proposition 2, there exists some scalar c̄ > 0 such that

wk + c̄σ(uk) > w∗ − ε.

Because ck → ∞ and the function σ is nonnegative (cf. Assumption 2), there exists
some sufficiently large k̄ such that ck ≥ c̄ for all k ≥ k̄. Therefore,

wk + ckσ(uk) ≥ wk + c̄σ(uk) > w∗ − ε for all k ≥ k̄,

which contradicts Eq. (33). ��
6.2 Penalty methods for constrained optimization

In this section, we make the connection between the geometric framework and the
analysis of penalty methods for constrained optimization problems. In particular, we
consider the following constrained optimization problem

min f0(x)

s.t. x ∈ X, f (x) ≤ 0,
(35)

where X is a nonempty subset of R
n,

f (x) = (f1(x), . . . , fm(x))

and fi: Rn �→ (−∞, ∞] for i = 0, 1, . . . , m. We denote the optimal value of this problem
by f ∗.

We are interested in penalty methods for the solution of problem (35), which
involve solving a sequence of less constrained optimization problems of the form

min {f0(x) + cσ(f (x))}
s.t. x ∈ X.

(36)

Here, c ≥ 0 is a penalty parameter that will ultimately increase to +∞ and σ is a
penalty function. For a given c ≥ 0, we denote the optimal value of problem (36) by
f̃ (c).

To make the connection to the geometric framework, we use the primal function
p : R

m �→ [−∞, ∞] of the optimization problem (35), defined as

p(u) = inf
x∈X, f (x)≤u

f0(x). (37)
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We consider the set V of the geometric framework to be the epigraph of the primal
function,

V = epi(p).

Then, the geometric primal value w∗ is equal to p(0),

w∗ = p(0) = f ∗.

Moreover, the objective function of the geometric penalized problem is given by

d̃(c) = inf{(u,w) | p(u)≤w}{w + cσ(u)} = inf
u∈Rm

inf
x∈X

f (x)≤u

{f0(x) + cσ(u)}. (38)

In what follows, we use an additional assumption on the augmenting function α.

Assumption 4 Let σ be an augmenting function. The augmenting function σ(u) is
nondecreasing in u.

Note that all examples of augmenting functions we provided throughout Sect. 4 are
nondecreasing in u, except for the nonnegative augmenting functions involving a sym-
metric positive definite matrix Q and level-bounded augmenting functions. However,
even functions that involve a symmetric positive definite matrix Q are nondecreasing
in u for the special case when Q is diagonal.

In the following lemma, we show that for any c, the optimal value of the penalized
problem (36) is equal to the objective function of the geometric penalized problem,
i.e., f̃ (c) = d̃(c) for all c ≥ 0.

Lemma 6 Let σ be an augmenting function and α be a scaling function that satisfy
Assumption 4. Then,

d̃(c) = f̃ (c) for all c ≥ 0.

Proof From the definition of the primal function in Eq. 37, it can be seen that

p(u) = sup
z≥0

{f0(x) + z′(f (x) − u)}.

Therefore,

d̃(c) = inf
x∈X

inf
u∈Rm

sup
z≥0

{f0(x) + z′(f (x) − u) + cσ(u)}.

For every x ∈ X, by setting u = f (x), we obtain

inf
u∈Rm

sup
z≥0

{f0(x) + z′(f (x) − u) + cσ(u)} ≤ f0(x) + cσ(f (x)) for all x ∈ X.

By taking the infimum over x ∈ X of both sides, we see that

d̃(c) ≤ inf
x∈X

{f0(x) + cσ(f (x))} = f̃ (c) for all c ≥ 0.

By using Eq. 38 and the assumption that σ(u) is nondecreasing in u, we obtain for
all c ≥ 0,

d̃(c) = inf
u∈Rm

inf
x∈X

f (x)≤u

{f0(x) + cσ(u)} ≥ inf
x∈X

{f0(x) + cσ(f (x))} = f̃ (c),

establishing the result. ��
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6.3 Necessary and sufficient conditions for convergence of penalty methods

In this section, we consider a penalty method for which penalty (augmenting) function
σ satisfies the assumptions of Sect. 4 We provide necessary and sufficient conditions
for the convergence of the optimal values f̃ (c) of the penalized problems (36) to the
optimal value f ∗ of the original constrained problem (35) when c → ∞.

In the next proposition, we present the necessary conditions. These conditions
require the continuity at u = 0 of the augmenting function σ(u) (cf. Assumption 3).

Proposition 11 (Necessary conditions for penalty convergence) Let σ be an aug-
menting function that satisfies Assumption 3. Consider the constrained problem (35)
and the penalized problems (36) for c ≥ 0. Assume that the optimal values f̃ (c) of the
penalized problems converge to the optimal value f ∗ of the constrained problem as
c → ∞, i.e., limc→∞ f̃ (c) = f ∗. Then, the primal function p(u) is lower semicontinuous
at u = 0, i.e., for all sequences {uk} ⊂ R

m with uk → 0, we have

p(0) ≤ lim inf
k→∞

p(uk).

Proof The result follows from Lemma 6 and Proposition 9 with V = epi(p). ��
In the next proposition, we present sufficient conditions for the convergence of the

optimal values f̃ (c) of the penalized problems to f ∗ as c tends to ∞.

Proposition 12 (Sufficient conditions for penalty convergence) Assume that the con-
strained optimization problem (35) is feasible and bounded from below, i.e., f ∗ is finite.
Assume that the direction (0, −1) is not a recession direction of the epigraph of the
primal function, i.e.,

(0, −1) /∈ (epi(p))∞.

Assume that p(u) is lower semicontinuous at u = 0. Furthermore, assume that the
augmenting function σ satisfies Assumptions 2 and 4. Then, the optimal values f̃ (c)
of the penalized problems (36) converge to the optimal value f ∗ of the constrained
problem as c → ∞, i.e.,

lim
c→∞ f̃ (c) = f ∗.

Proof We use Lemma 6 and Proposition 10 where the set V is the epigraph of the
function p, i.e.,

V = epi(p).

From the definition of p, we have

w∗ = p(0) = f ∗.

The assumption that the constrained optimization problem (35) is feasible and
bounded from below implies that f ∗ is finite, and therefore w∗ is finite. Since V is
the epigraph of a function, the set V is extending upward in w-space. Moreover,
V is extending upward in u-space because the primal function p is nonincreasing.
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Together with the assumption that (0, −1) /∈ (epi(p))∞, we have that the set V satisfies
Assumption 1.

By Assumption 4 and Lemma 6, we have d̃(c) = f̃ (c) for all c ≥ 0. By the choice of
set V, the condition

p(0) ≤ lim inf
k→∞

p(uk)

for all sequences {uk} with uk → 0 is equivalent to the condition that for every
sequence {(uk, wk)} ⊂ V with uk → 0, there holds w∗ ≤ lim infk→∞ wk. The result
then follows from Proposition 10. ��

7 Conclusions

In this paper, we provided a unifying geometric framework that can be used to ana-
lyze optimization duality with nonlinear Lagrangian functions and to establish con-
vergence behavior of general classes of penalty methods. We introduced two simple
geometric optimization problems that are dual to each other and studied conditions
under which the optimal values of these problems are equal. To establish this, we
show that we can use general concave surfaces to separate nonconvex sets with cer-
tain properties.

We used our results to study both optimization duality and penalty methods for non-
convex constrained optimization problems. We first considered augmented dual prob-
lems constructed by general convex augmenting functions, with possibly unbounded
level sets, and provided necessary and sufficient conditions for zero duality gap. We
then considered penalty methods for which the associated penalty function need
not be continuous, real-valued, or identically equal to zero over the feasible region.
Without assuming any coercivity conditions, we provided necessary and sufficient
conditions for the convergence of the penalized optimal values to the optimal value
of the constrained optimization problem.

The zero duality gap results established here have potential use in the develop-
ment of dual algorithms for solving nonconvex constrained optimization problems. In
particular, for such problems, one may consider relaxing some or all of the constraints
by using an augmented Lagrangian scheme or a penalty approach. Our results pro-
vide sufficient conditions guaranteeing the convergence of dual values to the primal
optimal value.
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